Cours de troisième
2 - Les identités remarquables
En quatrième, nous avons vu comment développer une expression littérale en utilisant la distributivité a×(b+c)=a×b+a×c et la double distributivité (a+b)×(c+d)=a×c+a×d+b×c+b×d.
Dans ce cours, nous allons voir trois égalités qui permettent d'aller plus vite quand on fait du calcul littéral.
Ces égalités s'appellent les identités remarquables.
La première identité remarquable
L'égalité (a+b)²=a²+2ab+b² est la première identité remarquable.
Démonstration
Si a et b sont 2 nombres, nous pouvons développer (a+b)² :
Exemple
Développement de (2x+3)².
Avec nos connaissances de quatrième, on aurait :
En utilisant la première identité remarquable, on obtient directement le résultat.
Attention !
Le carré de 2x c'est 2x fois 2x, donc
donc donc 4x².
Une erreur fréquente est d'écrire que le carré de 2x est 2x² !
Pour éviter cette erreur, on utilise des parenthèses.
Exemple
.
As-tu compris ?
La deuxième identité remarquable
L'égalité (a-b)²=a²-2ab+b² est la deuxième identité remarquable.
Démonstration
Exemple
(3x-4)²=(3x)²-2×3x×4+4²=9x²-24x+16
Entraînement
La troisième identité remarquable
L'égalité (a+b)(a-b)=a²-b² est la troisième identité remarquable.
Démonstration
.
Exemple
(2x+3)(2x-3)=(2x)²-3²=4x²-9.
As-tu compris ?
Utiliser les identités remarquables
Méthode
- 1. On repère l'identité remarquable que l'on va utiliser.
- 2. On l'applique en remplaçant a et b par les valeurs données.
As-tu vraiment compris ?
Les identités remarquables sur cmath.fr
cours, cours en vidéo, exercices, questions (2)
Sur le même thème
• Cours de calcul littéral de cinquième. Les expressions littérales, comment réduire une expression littérale.
• Cours de calcul littéral de quatrième. La distributivité et la double distributivité.
• Cours de quatrième sur la factorisation. Introduction à la factorisation avec méthode et exemples.
• Cours de troisième sur la factorisation. Factorisations compliquées, factorisations en utilisant les identités remarquables. Résolution d'équations-produits.
Sponsorisé
• Cours de maths. Trouvez un professeur en ligne ou près de chez vous en France, en Belgique ou en Suisse avec Superprof.